Инфракрасный фотосинтез как потенциальный источник жизни

Инфракрасный фотосинтез как потенциальный источник жизни

Низкоэнергетическое излучение гидротермальных источников способно заменить солнце.

Фотосинтез — основная движущая сила практически всей жизни на поверхности нашей планеты. Большинство фотосинтезирующих существ делает ставку на свет в видимой части спектра, но есть и такие, которым подавай инфракрасное излучение. Несколько лет назад глубоко под водой близ гидротермального источника был даже обнаружен вид бактерий, которым солнце не нужно вовсе.

Разумеется, все сразу подумали о других планетах, и Роландо Карденас из Центрального университета «Марта Абреу» (Куба) с коллегами взялись за расчёты.

Гидротермальные источники появляются близ подводных вулканов в районе срединно-океанических хребтов. Литосферные плиты расходятся, и магма врывается в образовавшиеся полости морского ложа, нагревая воду, насыщенную минералами. Вода изливается изо дна, минералы откладываются, и возникают конструкции, напоминающие дымовые трубы, — их называют чёрными курильщиками.

Может показаться, что в таких обжигающих условиях жить нельзя, но в действительности гидротермальные источники — очаги биологического разнообразия. Железом, сероводородом и аммиаком, которые изрыгаются из земных недр, питаются различные бактерии. Последние в свою очередь поддерживают целые экосистемы, знаменитые прежде всего беспозвоночными, живущими в хитиновых трубках. Встречаются также причудливые улитки, крабы и др.

Восемь лет назад в Тихом океане близ побережья Мексики Томас Битти из Университета Британской Колумбии (Канада) и его коллеги открыли зелёную серобактерию, которой недостаточно химических веществ, выброшенных гидротермальным источником. Чтобы извлечь энергию из реакции с участием серы, ей требуется свет. Но на глубине 2 400 м с этим туго. Солнечные фотоны полностью поглощаются уже на глубине 200 м. Всё, что есть у таких бактерий, — это инфракрасное излучение быстро охлаждающихся перегретых вод гидротермального источника. За это излучение у бактерий отвечают наросты, напоминающие усики.

Изучать выносливые, лишённые солнца формы жизни в столь труднодоступных районах дорого и неудобно, и эта бактерия с тех пор ни разу не была изолирована повторно. Поэтому г-н Карденас и его коллеги попытались оценить фотосинтетический потенциал подобных экосистем с помощью математики.

Исследователи начали с источника, описанного группой г-на Битти. Свыше 99% тамошнего света — инфракрасное излучение низкой энергии. Свет на длине волны оптического диапазона с высокой энергией встречается редко и не может играть сколько-нибудь заметной роли в фотоситезе.

Учёные воспользовались уравнениями, описывающими фотосинтез поверхностного фитопланктона, но, конечно, изменили их, ведь ультрафиолетовое излучение, которое может навредить фитопланктону и тем самым воспрепятствовать фотосинтезу, не достигает морских глубин. Смоделирован различный уровень интенсивности излучения при температуре воды от 200 до 400 °C.

В результате показатели интенсивности инфракрасного фотосинтеза получились не очень высокими, то есть из излучения гидротермального источника можно извлечь не так много полезной энергии. Это согласуется со сведениями г-на Битти и его коллег о том, что данная зелёная серобактерия не является ни доминантным представителем своего сообщества, ни замечательным примером жизнестойкости. «По-моему, они цепляются за жизнь кончиками пальцев», — отмечает соавтор г-на Битти Роберт Блэнкеншип из Университета Вашингтона в Сент-Луисе (США).

Если подземная или подводная жизнь других планет хочет добыть достаточное количество энергии посредством инфракрасного фотосинтеза, ей придётся приобрести принципиально иные средства фотосинтеза или значительно расширить диапазон длины волн, с которыми они смогут работать.

Инфракрасная часть спектра начинается в районе 700 нм, а упомянутая бактерия собирала урожай на длине около 1 000 нм. Тем не менее г-н Карденас считает, что вне земной биологии могут существовать фотосинтезирующие организмы, которым будет хорошо в свете гидротермальных источников. «Уже при 1 100 нм зелёные серобактерии могли бы заниматься фотосинтезом в аналогичной среде на Европе», — говорит учёный, не исключая существования организмов, способных поглощать излучение с длиной волны 1 300 нм, что намного больше тех волн, которые могут усвоить земные организмы (соответственно, такие волны несут намного меньше энергии).

Г-н Блэнкеншип относится к этому скептически. По его словам, вода вокруг гидротермальных источников поглотила бы бóльшую часть излучения, оставив микробам совсем немного и к тому же вынудив их жить в опасной близости к перегретой среде. «Излучения оттуда очень и очень мало», — подчёркивает специалист.

Европа имеет толстую ледяную корку, и учёные почти уверены в том, что под ней существует океан, который поддерживается в жидком состоянии деформацией луны под действием приливных сил Юпитера. Это может порождать тектонические процессы в мантии Европы, которые способны привести к появлению гидротермальных источников на дне океана.

Но не стоит забывать о том, что пока характеристики гидротермальных источников на Европе — чистая спекуляция. Представления о внутреннем устройстве этого спутника Юпитера противоречивы.

В целом инфракрасный фотосинтез в качестве единственного или дополнительного средства производства энергии выглядит малоэффективным. В безднах океанов (по крайней мере нашей планеты) намного лучше зарекомендовал себя иной способ, основанный на использовании минералов. С другой стороны, биология не раз демонстрировала поразительную способность приспосабливаться к любым условиям: обнаружение жизни вокруг чёрных курильщиков в 1977 году удивило многих; вспомните хотя бы помпейского червя...

Результаты исследования опубликованы в журнале Astrophysics and Space Science.

Источник: compulenta.computerra.ru

Похожие новости:
Искусственный фотосинтез стал эффективным
На химфаке Королевского технического института в Швеции сумели создать искусственный механизм фотосинтеза, который по скорости химической реакции не уступает фотосинтезу растений. По словам самих исследователей, это открывает новые перспективы в альтернативной энергетике. Раньше многие пытались воспроизвести часть ..
2012-04-13 2879 0 Технология
0
Разработан способ получения электроэнергии от растений
Фотосинтез - довольно простой процесс, который ученые поняли уже довольно давно. Но недавний прорыв в использовании солнечной энергии удалось понять недавно, нескольким членам научного сообщества. Команда исследователей из Университета штата Джорджия придумала, как использовать фотосинтез для получения ..
2013-05-13 2496 0 Технология
0
Инфракрасный свет научились превращать в видимый
Ученые разработали соединение, которое способно превращать свет в ближнем инфракрасном диапазоне в широкополосной белый свет. Изобретение предоставляет дешевый и эффективный способ получить видимый свет. О нем сообщается в журнале Science.Нильс Вильгельм Роземанн (Nils Wilhelm Rosemann) и его коллеги ..
2016-06-10 908 0 Технология
0
Ученые заставили глаз человека различать невидимый инфракрасный свет
Ученые из США, Швейцарии, Норвегии и Польши заставили человеческий глаз наблюдать невидимый им ранее инфракрасный свет. Результаты своих исследований авторы опубликовали в журнале PNAS, а кратко с ними можно ознакомится на сайте Университета Вашингтона в Сент-Луисе. Человеческий глаз способен ..
2014-12-02 3612 0 Технология
0
Ученые нашли новый метод изучения фотосинтеза
Растения преобразовывают энергию из солнечного света в химическую энергию в процессе, называемом фотосинтез. Эта энергия передается затем людям и животным, которые едят растения, и, таким образом, фотосинтез является основным источником энергии для всего живого на Земле. Но фотосинтетическая активность ..
2014-03-26 1116 0 Технология
1
Нанокристаллы продуцируют водород под действием света
Природный фотосинтез позволяет растениям собирать солнечный свет и конвертировать его в энергию — электрическую и химическую. Большинство искусственных фотосинтетических систем стараются имитировать этот естественный процесс, используя для запуска расщепления воды на водород и кислород абсорбирующие свет органические красители, ..
2012-11-12 1206 0 Технология
0
Генетика бессмертия
С 22 по 25 апреля в Москве проходила международная научная конференция «Генетика старения и продолжительности жизни». Роберт Шмуклер Рис, доктор философии, профессор университета медицинских наук (Арканзас, США) ответил на вопросы Анны Чапман, президента фонда «УМА». В этом выпуске: ..
2012-05-3 1202 0 Технология
0
Кремний и вода дадут водород в 150 раз быстрее
Сверхмаленькие частицы кремния, вступая в реакцию с водой, практически мгновенно производят водород. Таковы результаты исследования, проведенного учеными из университета Буффало. В ходе серии экспериментов ученые создали сферические кремниевые частицы около 10 нанометров в диаметре. Объединенные с водой, ..
2013-01-26 1702 0 Технология
0
Биологи испытали протез сетчатки глаза на животных
Испытания новейшей электронной сетчатки провели ученые из Стэнфордского университета. Первые стадии экспериментов прошли удачно. Лабораторным крысам ученые вживили протезы и проводили наблюдения в течение полугода. За этот период не появилось никаких воспалительных процессов, а сама искусственная сетчатка ..
2013-06-21 1396 0 Технология
0
Новый способ повысит эффективность солнечных батарей
Исследователи из института телекоммуникаций Фраунгофера разработали систему, которая позволяет солнечным элементам эффективно собирать энергию от инфракрасного спектра. Новая технология,которая обещает хорошую работоспособность с коммерческими солнечными батареями существующими сейчас в продаже и в будущем имеет потенциал стать ..
2012-10-13 1900 0 Технология
0
Продолжительность жизни научились предсказывать по митохондриям
Ученые из Пекинского университета обнаружили, что продолжительность жизни круглых червей Caenorhabditis elegans можно предсказать на основе анализа интенсивности производства активных форм кислорода в митохондриях животных. Исследование ученых опубликовано в журнале Nature. Исследователям впервые удалось проследить за образованием ..
2014-02-17 999 0 Технология
0
Инфракрасная передача данных превысит Wi-Fi
На рубеже веков  инфракрасные порты для беспроводной передачи данных были обычной принадлежностью мобильных телефонов и некоторых ноутбуков. Позже технологии инфракрасной связи уступили свое место универсальным технологиям радиосигналов, таких Wi-Fi и Bluetooth. Новый инфракрасный модуль, ..
2012-10-12 2065 0 Технология
0
Неорганические наноматериалы становятся доступнее
После первых успехов, связанных с использованием богатого кислородом пламени для синтеза привычных наноматериалов, таких как углеродные нанотрубки, нановолокна и фуллерены, учёные из Университета Оклахомы (США) попробовали применить тот же подход для создания новых типов наноструктур. Однако на сей раз вместо синтезирования ..
2012-11-2 1225 0 Технология
0
Ученые разработали микроскопический датчик силы
Физики из России, Белоруссии и Испании разработали микроскопический датчик силы, в своем устройстве использующий углеродные нанотрубки. Описание датчика представлено к публикации в журнале Computational Materials Science, с ее кратким содержанием можно ознакомиться на сайте Московского физико-технического института. Устройство представляет ..
2014-07-01 1121 0 Технология
0
Искусственные листья могут стать новым источником энергии
Технология "искусственных листьев" может прийти на смену нефти, обеспечив энергией корабли, самолеты и автомобили. Ученые планируют разработать технологию переработки углекислого газа в углеводородное топливо посредством фотосинтезирующих бактерий. Исследователи выразили надежду на то, что эта технология появится в течение ..
2012-02-20 1478 0 Технология
0