Гигантский вольфрамовый зонт на углеродных спицах, который в научной терминологии именуют трансформируемой антенной-рефлектором, призван покрывать огромные площади, с которых снимается спутниковый сигнал. Он должен обеспечить гораздо большую чувствительность и устойчивость спутниковой связи по сравнению с той, что мы имеем сегодня. Разрабатывают это устройство при поддержке ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 годы» учёные Национального исследовательского Томского государственного университета. О математике и физике «космического зонтика», а также о его земной пользе рассказывает руководитель проекта, заведующий кафедрой механики деформируемого твёрдого тела ТГУ Владимир Скрипняк.
Владимир Альбертович, вы проектируете космические аппараты с трансформируемыми антеннами-рефлекторами. Расскажите, какие задачи решаете по ходу этого проекта-
– В целом от размеров трансформируемых рефлекторов зависят площади территорий, с которых снимается сигнал. Фактически эти рефлекторы представляют собой систему, обеспечивающую чувствительность спутниковых систем связи, и соответственно отвечающую за устойчивую связь. К сожалению, технически воплотить эти закономерности очень сложно, поскольку с увеличением размеров рефлекторов – антенн у нас возникает целый комплекс новых научных проблем. На сегодняшний день буквально несколько стран в мире подошли к их решению. В их числе и Россия в лице нашей группы, объединяющей учёных из нашего института и специалистов партнерской организации – АО «Информационные спутниковые системы им. академика М.Ф. Решетнева». Мы как раз решаем вопрос повышения чувствительности таких антенных устройств за счёт увеличения размера самого рефлектора.
В идеале должно быть так: при запуске рефлектор находится в сложенном состоянии, а на орбите раскрывается, приобретая соответствующую форму и многократно увеличиваясь в размерах.
Но чтобы обеспечить требуемые параметры в снятии сигнала, необходима очень высокая точность геометрии для параболической части антенны. Это уже проблемы из области механики деформируемого твёрдого тела. Нужно подбирать специальные материалы для каркасов и для вантовой системы развёртывания всей этой конструкции, плюс разрабатывать электронную начинку для обеспечения детекции принимаемых сигналов. Здесь целый комплекс сложных задач.
Какой путь в их решении уже пройден к настоящему моменту- Что вам удалось сделать-
– Мы разработали методику расчётов и проектирований для сложных конструкций с вантовыми элементами с учётом новых возможностей полимерных композитов. Она использована для выработки и проектных решений. На основе проектных решений созданы разноразмерные макеты аппарата с трансформируемыми антеннами-рефлекторами. На этих макетах мы моделируем работу системы, проверяем точность своих расчётов. А наш индустриальный партнер будет создавать макет в натуральную величину.
Как выглядят эти макеты, и какие возможности они должны продемонстрировать-
– Макет трансформируемого рефлектора похож на зонтик, который раскрывается. Но если форму раскрытого зонтика поддерживают спицы, то систему трансформируемого рефлектора – каркас из углеродных композиционных материалов, очень лёгких и одновременно жёстких, не деформируемых под действием нагрева или охлаждения. Всё же рефлектор работает в условиях открытого космоса и может находиться как на солнечной стороне, так и в тени. На этот каркас натягивается специальная ткань из вольфрамовой нити, как правило, с позолотой, для того, чтобы увеличить альбедо – отражение лучей. Это и есть основной элемент, который работает по сигналу. В центре антенны располагается специальное электронное устройство: приёмник сигналов. Лучи, электронные сигналы, попадая на поверхность антенны, отражаются и направляются в центр приёмного устройства. Если геометрия искажена в силу разных причин, то будет нарушена работа всей системы. Также приходится решать вопросы изменения формы конструкции при коррекции ее орбиты. Безусловно, в момент коррекции орбиты всегда будут потери качества сигнала. Но мы специально рассчитываем и прогнозируем затухание колебаний в таких системах для того, чтобы как можно быстрее антенна восстановила свою форму, геометрию и снова перешла в рабочее состояние.
В принципе, такие задачи понятны, и методики для их решения есть. Но сам объект чрезвычайно сложный, приходится каждый раз калибровать модели, чтобы быть уверенным в том, что модельные параметры, которые закладываются в расчёт, соответствуют физическим устройствам. Плюс используются совершенно новые композитные полимеры с углеродным армированием, которые исследованы недостаточно полно.
Как проходят испытания образцов в лаборатории-
– На разработанных моделях мы стараемся определить натяжение вантовой конструкции при перемещении и, таким образом, проверить те математические модели, которые мы собираемся использовать уже в реальной конструкции. Поскольку у нас нет возможности использовать данные о реальных рефлекторах, работающих на орбите, – там сейчас просто нет устройств и технологий, которые позволили бы эти данные получать, – приходится проверять свои модели в условиях гравитации. К сожалению, они не дают стопроцентной точности в силу того, что на каждый элемент этой конструкции действует сила тяжести. Но мы надеемся, что опыт, который мы сейчас приобретаем, поможет нам создать крупногабаритные рефлекторы нового поколения, и решить все поставленные перед нами задачи.
По вашей оценке, когда аппараты с крупногабаритными антеннами-рефлекторами, которые вы сегодня создаете в рамках настоящего проекта, будут летать в космосе-
– Мы занимаемся научным сопровождением методик создания и производства этих устройств. А сами устройства будут созданы по нашим рекомендациям, с нашими решениями в экспериментально-промышленных лабораториях соответствующих структур Роскосмоса.