Внутри протона

Внутри протона

Завершено 23-летнее исследование адронной частицы

Коллаборации HERA (Hadron-Electron Ring Accelerator) из крупнейшего в Германии центра физики элементарных частиц DESY (Deutsches Elektronen-Synchrotron) завершили 23-летние исследования внутренней структуры и свойств протона. О результатах своей работы ученые сообщили в середине июня 2015 года.

Коллаборации HERA (Hadron-Electron Ring Accelerator) из крупнейшего в Германии центра физики элементарных частиц DESY (Deutsches Elektronen-Synchrotron) завершили 23-летние исследования внутренней структуры и свойств протона. О результатах своей работы ученые сообщили в середине июня 2015 года.

Коллаборации HERA объединяют около 300 ученых из 70 стран мира, включая Россию (например, группу физиков из Института экспериментальной и теоретической физики). Всего с 1992-го по 2007 год физики провели две серии экспериментов, получивших название H1 и ZEUS, а с 2008 года анализировали полученную информацию. Их данные — наиболее точные по физике протона.

Ускоритель HERA, расположенный в Гамбурге, уникален тем, что сталкивает, в отличие от, например, Большого адронного коллайдера (БАКа), протоны не друг с другом, а с бесструктурными частицами, лептонами — электронами, а также их античастицами — позитронами. Поэтому HERA состоит из двух различных ускорительных колец — сверхпроводящего кольца, в котором разгоняются протоны, и расположенного под ним кольца, где разгоняются лептоны.

Данные по глубоконеупругому (то есть изменяющему внутреннюю структуру частицы) рассеянию электронов и позитронов на протонах представлены учеными при энергиях протонов в 920, 820, 575 и 460 гигаэлектронвольт. Пучки электронов разгонялись до энергий в 27,5 гигаэлектронвольт. На масштабе Z0 бозона ученым также удалось уточнить значение константы сильного взаимодействия.

«Эта публикация — кульминация научной программы HERA и останется наиболее точной картиной протона надолго, — говорит Йоахим Мних, директор по исследованиям DESY. — Это важно не только для понимания самых фундаментальных свойств материи, но и для многих экспериментов на протонных коллайдерах, подобных БАКу в ЦЕРНе».

Ускоритель HERA был разработан специально для того, чтобы заглянуть вглубь протона, используя электроны в качестве зондов. 6,3-километровое сверхпроводящее кольцо разгоняет протоны до околосветовых скоростей, они сталкиваются с электронами и позитронами, разогнанными в противоположном направлении до столь же высоких скоростей в нижнем кольце.


 Детектор ZEUS имеет массу 3,6 тысячи тонн длину около 20 метров Фото: desy.de 1/2

Электроны и позитроны проникают внутрь протона, где электромагнитным или слабым образом взаимодействуют с его составляющими. Эти реакции измерялись двумя главными детекторами коллабораций H1 и ZEUS. Два эксперимента были посвящены процессам лептон-протонного рассеяния, и их результаты позволили лучше понять внутреннюю структуру протонов, описываемую квантовой хромодинамикой (КХД). В отличие от хорошо разработанной квантовой электродинамики, описывающей электромагнитные взаимодействия (например, таких частиц, как фотоны и электроны), КХД является пока полуэмпирической теорией.

Протоны есть в каждом ядре атома и состоят из трех кварков — двух верхних и одного нижнего, сильное взаимодействие между которыми осуществляется посредством глюонов. Как показали исследования HERA, реальная структура протона сложнее, поскольку внутри частицы могут рождаться и уничтожаться виртуальные глюоны, а также пары кварк-антикварк. Основной научный результат, достигнутый на ускорителе HERA, именно в этом.

комптоновское) рассеяние лептона на протоне" data-url="http://icdn.lenta.ru/images/2015/07/09/18/20150709184414015/original_d9c6b052ee0975ded0b2855f5ff9f12e.jpg">
 Глубоконеупругое (глубоко виртуальное комптоновское) рассеяние лептона на протоне Изображение: sps.ch

При низких скоростях протон ведет себя как частица, состоящая из трех кварков. По мере увеличения скорости протона внутри него рождаются виртуальные частицы: из увеличивающегося количества глюонов возникают виртуальные пары кварк-антикварк. То есть структура протона зависит от его скорости (или скорости наблюдателя).

Результаты работы коллаборации в целом подтвердили теоретические выводы КХД, согласно которым при увеличении энергии столкновения частиц внутри протона повышается вероятность рождения виртуальных частиц, так что его структура становится сложнее — частица буквально «закипает». Данные HERA подтверждают теорию, предполагающую объединение при высоких энергиях электромагнитных и слабых сил в единое электрослабое взаимодействие.


 Данные HERA показывают объединение электромагнитного (отмечено красным цветом) и слабого (отмечено синим цветом) взаимодействий в единое при высоких энергиях Изображение: desy.de

Структура протонов на малых расстояниях порядка 10-15 метров, сравнимых с эффективным диаметром протона (и радиусом действия сильных взаимодействий), хорошо описывается партонной (от английского part — часть) моделью. Ее предложил в 1969 году американский физик-теоретик Ричард Фейнман. Он считал, что высокоэнергетичные протоны состоят из сгустков материи, ведущих себя как отдельные частицы. Эта модель успешно описывала данные по рассеянию лептонов на протонах. Позднее выяснилось, что партоны — не что иное, как кварки и глюоны. Существование первых было теоретически предсказано в 1964 году Марри Гелл-Манном и Джорджем Цвейгом.

Внутри протона кварки находятся в практически свободном состоянии (явление, называемое асимптотической свободой). Однако в несвязанном (вне какой-либо частицы) состоянии кварк находиться не может — это обусловлено тем, что сила их взаимодействия (ядерная, или, иначе, сильная сила) увеличивается с ростом расстояния между кварками. Последние не могут покинуть протон или любой другой адрон (так называют частицы, участвующие в сильном взаимодействии) — это явление получило название конфайнмента (иначе — невылетания) кварков. Его математически строгой теории до сих пор не существует, а ее создание сводится к решению одной из Задач тысячелетия, сформулированных институтом Клэя.

При малых энергиях электромагнитное взаимодействие сильнее, чем слабое, но физикам из HERA удалось определить тип наблюдаемых ими взаимодействий благодаря частицам, которые в нем участвуют: электромагнитное взаимодействие осуществляется посредством безмассового нейтрального фотона, а слабое — массивных заряженных W± и нейтрального Z0 бозонов (уже — при высоких энергиях).

«Благодаря совмещению двух экспериментов мы достигли максимально возможной точности, — отметил Стефан Шмитт из коллаборации H1. — Объединенный набор данных не только повышает качество статистики, но и способствует пониманию каждого отдельного измерения и взаимной калибровки, поскольку два эксперимента используют различные детекторы и экспериментальные методы в своих измерениях».


 Структура протона Изображение: desy.de Протон состоит не только из трех кварков (отмеченных зеленым цветом), удерживаемых вместе при помощи глюонов (отмеченных пружинами), но и множества глюонов и виртуальных пар кварк-антикварк (последние отмечены оранжевым цветом), взаимодействующих друг с другом.

В коллаборации HERA провели большую работу, объединив данные многолетних измерений. Уже в 2009 году ученые из H1 и ZEUS опубликовали совместную работу о структуре протона, опираясь только на данные до 2000 года. Их статья процитирована более 600 раз, что делает ее одной из самых популярных в своей области. Новая публикация основана на анализе более чем в четыре раза большего количества столкновений частиц и содержит данные по разным областям энергий.

Аманда Купер-Саркар Фото: desy.de

За работы по исследованию структуры протона с помощью глубоконеупругого рассеяния лептонов на ядрах водорода британский Институт физики вручил Аманде Купер-Саркар медаль Чедвика за 2015 год. Эта награда присуждается раз в два года за выдающиеся исследования в области физики элементарных частиц.

Купер-Саркар много лет работала над оптимизацией методов интерпретации экспериментальных данных HERA, а также над квантовой хромодинамикой. Она один из основных разработчиков соответствующего программного обеспечения, при помощи которого коллаборации H1 и ZEUS проанализировали свои данные.

Во многом именно благодаря ей коллаборации H1 и ZEUS объединили свои результаты и представили справочные данные, по которым на десятилетия вперед будет определяться структура протона. В настоящее время Купер-Саркар участвует в коллаборации ATLAS на БАКе, где ее опыт и знания, приобретенные на HERA, очень пригодились.

Однако эксперименты HERA не ответили на все вопросы в области Стандартной модели низких энергий. «Наши измерения не могут достаточно полно описываться квантовой хромодинамикой при взаимодействиях на низких энергиях между электроном и протоном, — подчеркнула Мэтью Винг из коллаборации ZEUS. — На это, безусловно, обратят внимание теоретики и феноменологи в будущем».

 

Newsland.ru

Похожие новости:
Физики вновь озадачены результатами измерений протона
Очередные попытки измерить размер протона поставили ученых в тупик. Результаты вновь оказались отличными от предыдущих, полученных при использовании других методов, и причины этих различий ученые найти не могут. В этот раз физики измерили размер протона при помощи метода ..
2014-01-15 3209 3 Научные открытия
3
Размер протона озадачил физиков
Физики провели измерение размера протона, результаты которого вновь оказались отличны от результатов других методов, причем причины этих различий до сих пор не ясны. Статья ученых опубликована в журнале Science , а ее краткое содержание приводит NatureNews. Для измерения размера протона ..
2013-01-26 2658 0 Научные открытия
0
К загадке радиуса протона добавили дейтрон
Международная коллаборация физиков CREMA обнаружила новые указания на то, что в радиусе протона есть неопределенность. Исследователи проанализировали поведение мюонного дейтерия — частицы, в которой вокруг ядра из нейтрона и протона вращается мюон. Оказалось, что зарядовый радиус дейтрона — ядра дейтерия ..
2016-08-13 2798 0 Научные открытия
0
Физики впервые измерили слабый заряд протона
Физики впервые провели экспериментальное измерение слабого заряда протона. Статья ученых принята к публикации в журнале Physical Review Letters, а ее краткое изложение приводится в пресс-релизе Лаборатории Джефферсона (Jefferson Lab), где и было сделано открытие. Слабое взаимодействие - одно из четырех ..
2013-09-18 2776 0 Научные открытия
0
Физики уточнили вклад «ядерного клея» в спин протона
Международная коллаборация физиков PHENIX получила новые данные о вкладе в спин протона глюонов — специальных частиц, ответственных за «склеивание» между собой кварков. Исследование является следующим шагом в разрешении «кризиса протонного спина» и уточняет роль переносчиков сильных ..
2016-02-19 2256 0 Научные открытия
0
Физики впервые рассчитали «состав» массы протона
Физики из США и Китая впервые рассчитали вклады в массу протона, связанные с различными эффектами. Для расчетов, выполненных в рамках решеточной КХД, ученые использовали суперкомпьютер «Титан» производительностью около 27 петафлопс. В результате исследователи получили, что кварковый конденсат обеспечивает около ..
2019-02-26 10777 0 Научные открытия
0
Объяснен загадочный феномен внутри атомных ядер
Международная группа физиков выяснила, почему бета-распады в атомных ядрах протекают медленнее, чем в свободных нейтронах. Над решением этой загадки ученые бились в течение 50 лет, сообщается в пресс-релизе на Phys.org.Исследователи изучили превращение изотопа олова-100 в индий-100. Эти два элемента имеют одинаковое ..
2019-03-12 11571 0 Научные открытия
-2
Еще один шаг к тайнам нуклонов
Силы, действующие внутри атомных ядер, вызывают у физиков исключительный интерес. Новые эксперименты в области промежуточных энергий позволяют сделать еще один шаг к пониманию свойств сильного взаимодействия. Чтобы понять природу сильного взаимодействия в деталях, исследователи проводят сложные эксперименты, ..
2013-12-2 2376 3 Научные открытия
0
Физики вплотную приблизились к стандартному квантовому пределу
Ученым из Калифорнии в своих измерениях удалось наиболее близко приблизиться к значению стандартного квантового предела. Свое исследование авторы опубликовали в журнале Science, кратко с ним можно ознакомиться на сайте Национальной лаборатории имени Лоуренса в Беркли. Физикам впервые удалось добиться ..
2014-06-28 2332 0 Научные открытия
0
Крупнейшие обсерватории впервые объединили усилия по поиску гравитационных волн
Европейская гравитационная обсерватория Virgo 1 августа 2017 года начала поиск гравитационных волн, присоединившись к двум детекторам американского эксперимента LIGO. Теперь в случае фиксации гравитационной волны всеми тремя приборами ученые смогут точно установить координаты ..
2017-08-02 24962 0 Научные открытия
0
Физики определили нижнюю границу массы магнитных монополей
Гипотетические магнитные монополи могут рождаться в столкновениях тяжелых ионов или в сильных магнитных полях нейтронных звезд. Физики из Имперского колледжа Лондона теоретически рассмотрели эти процессы и рассчитали нижнюю границу для возможной массы монополей — она оказалась чуть меньше массы ..
2017-12-14 14055 0 Научные открытия
-2
Физики из ЦЕРНа уточнили массу бозона Хиггса
Физики двух коллабораций ATLAS (A Toroidal LHC ApparatuS) и CMS (Compact Muon Solenoid) объединили свои данные по массе бозона Хиггса и таким образом получили ее уточненное значение. Об этом сообщается на сайте ЦЕРНа. Уточненное значение массы бозона Хиггса равняется 125,09±0,24 ..
2015-03-20 3088 0 Научные открытия
0
В БАКе сообщили об открытии двух новых барионов
Коллаборация LHCb сообщила об открытии в ходе экспериментов на Большом адронном коллайдере (БАК) двух новых барионов. Результаты своих исследований авторы опубликовали в журнале Physical Review Letters, а кратко с ними можно ознакомиться на сайте ЦЕРНа. Существование частицы Xi_b'- ..
2014-11-19 2263 0 Научные открытия
-1
Российские ученые проверили Стандартную модель на прочность
Коллаборация LHCb, работающая на Большом адронном колайдере (БАК), провела измерение параметра, описывающего превращение кварков b, в результате которого могли быть обнаружены неточности Стандартной модели. В исследовании принимали участие ученые из Новосибирского государственного университета (НГУ) и других ..
2015-07-30 6635 0 Научные открытия
0
В коллайдере созданы самые маленькие капли жидкости
Ученые полагают, что они создали наименьшие капли жидкости, которые когда-либо существовали, размером от трех до пяти протонов. Капли были созданы в самом большом в мире ускорителе, Большом андронном коллайдере (БАК) в Швейцарии, где частицы разгоняют почти до скорости света, ..
2013-05-21 2227 1 Научные открытия
0