Биологи
из Инстититута Скриппса в ходе эксперимента
по «эволюции-в-пробирке» получили
молекулу РНК, которая способна
катализировать синтез других РНК.
Предполагается, что на заре возникновения
жизни появление подобных молекул должно
было стать переломной точкой между
химической и биологической эволюцией.
И, хотя такие РНК-ферменты уже делали в
подобных системах, новая молекула
обладает существенно большей
универсальностью. Работа опубликована
Proceedings of the National Academy of Sciences.
РНК, в отличие от ДНК, способна образовывать сложную трехмерную структуру и благодаря этому может выступать в роли фермента — ускорять протекание химических реакций (подробнее об отличиях можно прочитать здесь). РНК-ферменты называются рибозимами (ribonycleotide enzymes), и диапазон реакций, которые они способны катализировать, достаточно широк. Некоторые рибозимы даже специально выращиваются для практического применения в лабораторных тест-системах.
Однако биологов больше интересуют рибозимы, которые можно рассматривать как следы древнего РНК-мира — состояния возникающей жизни до момента появления современной системы синтеза белков. К таким следам относятся, например, РНК-интроны, которые вырезают сами себя из созревающей матричной РНК, РНК-затравки фермента теломеразы, работа которого необходима для синтеза ДНК на концах хромосом, и так далее. Главным свидетельством существования мира РНК является, конечно, рибосома — молекулярная машина, ядро которой составляет именно РНК, катализирующая синтез белков.
Гипотеза мира РНК принимается сейчас большинством специалистов по происхождению жизни и хорошо разработана (свежий обзор работ на эту тему можно прочитать здесь). Однако ключевой для этой гипотезы остается проблема возникновения рибозимов-полимераз, которые могли бы обеспечивать репликацию РНК. Без таких молекул (или ансамблей молекул) невозможно представить возникновение дарвиновской эволюции. Эксперименты по созданию таких молекул в лаборатории продолжаются более 20 лет, и на данный момент ученым удалось достичь скромных успехов.
Проводятся подобные эксперименты по следующей схеме. Исследователи берут некую исходную РНК-молекулу или просто случайную РНК-цепочку и амплифицируют ее в пробирке — то есть создают множество копий исходной РНК, в том числе со случайными мутациями. Затем проводится отбор молекул — например, на их способность катализировать присоединение нуклеотида к затравке. Отбираются только лучшие молекулы, которые затем снова амплифицируются и проходят следующий цикл отбора.
Такой метод ускоренной эволюции на сегодняшний день позволил биологам создать несколько молекул, которые более-менее удачно катализируют полимеризацию десятков РНК-нуклеотидов на РНК-матрице. Недавно группе из Кембриджа удалось создать рибозим, который может катализировать полимеризацию до двух сотен нуклеотидов — это уже цифра, превышающая длину большинства самих рибозимов. Однако до сих пор все полученные рибозимы-полимеразы очень капризны по отношению к природе синтезируемой РНК. Так, в кембриджской работе с рекордной длиной речь шла о специальной, удобной для этого рибозима матрице, а не о репликации рибозимом самого себя — такая молекула считается «Святым Граалем» в данной области и до сих пор никем не получена.
Капризность рибозимов-полимераз не случайна, а имеет фундаментальную природу. Дело в том, что хорошая с точки зрения полимеразы матрица должна иметь линейную структуру и не формировать узлов и петель вторичной структуры. С другой стороны, если РНК не образует узлов и петель, ей «нечем будет работать», то есть она не сможет выполнять какую-либо значимую функцию. В попытке преодолеть это противоречие авторы новой работы разработали новый механизм отбора полимераз, который максимизирует не длину синтезируемого продукта, а его функциональную способность — например, способность связывать какое-то вещество.
Как оказалось, новая молекула (она получила название 24-3) в среднем в сто раз быстрее синтезирует нуклеотиды, чем исходный вариант и, что важнее, ей практически безразличен нуклеотидный состав матрицы. Точность синтеза при этом оказалась несколько ниже исходной (около 92 процентов — точность самых «плохих» природных полимераз составляет около 99 процентов). С помощью новой молекулы авторы провели синтез природной фенилаланиновой транспортной РНК и даже сделали РНК-вариант полимеразной цепной реакции, ПЦР. В ходе ПЦР матрица многократно амплифицируется в ходе нескольких этапов синтеза. Следует отметить, что для РНК-ПЦР ученые использовали очень короткую и простую матрицу. Сама себя рибозим-полимераза синтезировать не смогла.
Проблема возникновение рибозим-полимераз и автономных репликаторов вообще остается одной из самых трудных в области исследования происхождения жизни. Дело в том, что для возникновения дарвиновской эволюции недостаточно появления просто точных полимераз, они должны быть при этом еще и компактными — иначе непонятно, как объяснить их случайное возникновение. Если говорить правильнее, речь идет о соотношении между точностью репликатора и объемом наследственной информации — эти величины связаны так называемым порогом Эйгена. Дарвиновская эволюция становится возможна только выше порога Эйгена, ниже которого мутационная катастрофа и вымирание неизбежны.
Александр Ершов
Александр Марков, «Рождение сложности: Эволюционная биология сегодня. Неожиданные открытия и новые вопросы», 2010
Евгений Кунин, «Логика случая: О природе и происхождении биологической эволюции», 2014
Михаил Никитин, «Происхождение жизни: От туманности до клетки», 2016