Немецкий термоядерный стелларатор довел время удержания плазмы до 160 миллисекунд

Немецкий термоядерный стелларатор довел время удержания плазмы до 160 миллисекунд

Стелларатор Wendelstein 7-X доказал свою работоспособность в серии экспериментов, проведенных в 2016-2017 годах — дестабилизирующий плазму бустрэп-ток удалось уменьшить почти в четыре раза, а время удержания плазмы получилось довести до 160 миллисекунд. На данный момент это лучший результат среди стеллараторов. Статья немецких физиков, подводящая итоги серии экспериментов, опубликована в Nature Physics, кратко о работе ученых рассказывается в редакционной колонке News & Views.

Физики обещают построить термоядерный реактор уже более шестидесяти лет (с тех пор, как было испытано термоядерное оружие), однако построить действующий коммерческий реактор им до сих пор так и не удалось. Дело в том, что для осуществления долгосрочного термоядерного синтеза в реакторе необходимо достаточно долго удерживать плазму, разогретую до огромной температуры порядка десяти миллионов градусов. Как правило, физики используют для этого мощные сверхпроводящие магниты, создающие сильные магнитные поля и не дающие плазме коснуться стенок. К сожалению, намагниченная плазма очень нестабильна — стоит небольшому кусочку плазмы отклониться от оптимальной траектории, как он выбрасывается на стенку и прожигает ее. Поскольку частицы в плазме постоянно сталкиваются друг с другом, рано или поздно такие выбросы происходят. Поэтому время удержания существующих термоядерных реакторов составляет всего несколько минут (разумеется, до безвозвратного прожигания стенки в реальных экспериментах дело стараются не доводить), а генерируемая в результате синтеза мощность превысила мощность, необходимую для поддержания реакции, всего несколько лет назад.

Наиболее распространенным типом термоядерных реакторов являются токамаки — тороидальные камеры с магнитными катушками, все современные рекорды в области термоядерного синтеза относятся именно к этому типу установок. В токамаке плазменный шнур удерживается с помощью тороидального поля внешних магнитных катушек и полоидального поля, создаваемого протекающим по шнуру электрическим током. Грубо говоря, магнитное поле токамака выглядит как бублик, на который намотаны линии напряженности магнитного поля. К сожалению, для работы этого типа термоядерного реактора электрический ток в плазме должен поддерживаться постоянно, что довольно сложно технически реализовать.

Тем не менее, токамаки — это не единственная возможная схема термоядерного реактора. Наряду с ними ученые разрабатывают стеллараторы, в которых поддерживать электрический ток внутри плазмы не нужно (он возникает сам собой), и можно обойтись только внешними магнитными полями. Как и у токамака, в основе стелларатора лежит тор, однако магнитные поля внешних катушек ведут себя гораздо хитрее, образуя систему замкнутых, вложенных друг в друга тороидальных магнитных поверхностей. Грубо говоря, в стеллараторе плазма образует «мятый бублик» вместо «ровного бублика» токамака (чтобы понять, о чем идет речь, лучше один раз посмотреть на рисунок). Это позволяет предотвратить «расплескивание» плазмы и теоретически должно повысить время ее удержания. Правда, рассчитать такую конфигурацию магнитного поля оказалось невероятно сложно — хотя впервые идея стелларатора была предложена еще в 1951 году, существенного прогресса в его разработке удалось достичь только к началу XXI века, когда для вычислений удалось привлечь суперкомпьютеры.


Wendelstein 7-X — это один из первых стеллараторов, в котором термоядерный синтез действительно удалось осуществить. Этот реактор состоит из 50 сверхпроводящих ниобий-титановых катушек около 3,5 метров в высоту и общим весом около 425 тонн. Катушки способны создавать магнитное поле индукцией три тесла, удерживающее плазму с температурой более 60 миллионов градусов Цельсия, а суммарный объем плазмы может достигать 30 кубических метров. В новой работе ученые приводят результаты работы стелларатора в 2016-2017 годах, которые подтвердили, что в плазменном шнуре внутри установки возникает сравнительно слабый бутстрэп-ток (bootstrap current). В отличие от токамаков, в которых этот ток стремятся как можно сильнее увеличить, в стеллараторах от него стараются избавиться, поскольку он приводит к образованию угловых магнитных островов (edge magnetic islands) и дестабилизирует плазму. Новые измерения на Wendelstein 7-X показали, что величину этого тока удалось ослабить примерно в четыре раза по сравнению с токамаками; кроме того, током можно управлять, изменяя топологию магнитного поля. Это позволило ученым довести время удержания плазмы до 160 миллисекунд, что на данный момент является лучшим результатом среди стеллараторов.


Стоит отметить, что Wendelstein 7-X предназначен для «обкатки» работоспособности новой схемы, для коммерческого термоядерного синтеза он не предназначен. С токамаками он тоже пока соревноваться не может. Тем не менее, как показывает работа ученых, рассчитанная конфигурация магнитных полей действительно приводит к возникновению в плазме бутстрэп-тока и позволяет удерживать плазму в течение сравнительно длинного промежутка времени. В будущем эти показатели планируется увеличить на несколько порядков, а в силу конструктивных особенностей управлять стеллараторами будет гораздо удобнее, чем токамаками. В частности, по оптимистичным оценкам Джозефа Талмаджа (Joseph Talmadge), автора короткой заметки в Nature, посвященной Wendelstein 7-X, следующее поколение стеллараторов сможет достигнуть времени удержания порядка 30 минут, если разрабатываемый дивертор активного охлаждения будет корректно работать. Новая статья, подтвердившая, что бутстрэп-током, протекающим в плазме, можно сравнительно легко управлять, позволяет надеяться на такой результат.


Ранее мы уже писали о ключевых событиях в постройке стелларатора Wendelstein 7-X. Так, в декабре 2015 года на установке получили первую гелиевую плазму, нагретую до температуры около одного миллиона градусов, и удержали ее в течение 0,1 секунды. А в декабре 2016 года стелларатор прошел испытания магнитного поля, в результате которых ученые убедились, что создаваемая им магнитная поверхность отклоняется от спроектированной не более чем на одну стотысячную.

Дмитрий Трунин

N+1

Похожие новости:
Поставлен рекорд по разогреву плазмы микроволнами
Учёные Института ядерной физики Сибирского отделения РАН установили рекорд по разогреву плазмы в газодинамической ловушке. Физикам удалось достичь температуры в 4,5 миллиона градусов.  Специалисты новосибирского научного центра для разогрева плазмы использовали газодинамическую ловушку ГДЛ, построенную в 1986 году, ..
2013-12-6 1171 0 Научные открытия
0
Ученые укрепят магнитный щит Земли
В Лос-Аламосской национальной лаборатории на суперкомпьютере Cray XT5 Jaguar проводят самое масштабное в истории науки моделирование столкновения солнечной плазмы с магнитосферой Земли. Мощная турбулентность, вызванная ударом магнитной плазмы, может нанести огромный ущерб мировой экономике и привести к гибели ..
2012-02-19 1966 0 Научные открытия
0
Физики приблизили мир к промышленному термояду
Учёным Института ядерной физики (ИЯФ) Сибирского отделения РАН удалось разогреть термоядерную плазму до рекордной электронной температуры 400 электрон-вольт (4 499 726,85 градусов Цельсия). Это достижение – важный результат на пути к термоядерной энергетике, подтверждающий возможность создания нейтронных генераторов ..
2013-12-6 1460 0 Научные открытия
0
Немецкий школьник сделал открытие в классической механике
Немецкий школьник Шаурийя Рай решил сразу две серьезные математические задачи, участвуя в конкурсе Дрезденского университета. Об этом сообщает издание The Local. Сам конкурс завершился в марте 2012 года, однако только сейчас решение школьника прошло проверку профессиональными математиками. ..
2012-05-24 2008 0 Научные открытия
0
Американцы воссоздали в лаборатории шаровую молнию
Американские учёные разработали эффективный способ создать подобие шаровой молнии в лаборатории, передаёт телерадиокомпания BBC. Группа сотрудников Академии военно-воздушных сил США в штате Колорадо научилась выделять светящиеся облака плазмы из специального раствора и поддерживать их на протяжении почти полсекунды. В ..
2013-08-21 1468 1 Научные открытия
0
Американские физики количественно описали магнитное пересоединение плазмы
В последние дни всеобщее внимание привлекла серия мощных вспышек на Солнце и последовавшие за ней магнитные бури на Земле. За все эти события отвечает магнитное пересоединение плазмы — процесс перераспределения магнитных полей, приводящий к значительным выбросам энергии. В своей недавней работе ..
2017-09-19 12717 0 Научные открытия
0
NASA сняло на видео солнечный торнадо
Космическое агентство NASA опубликовало видеокадры мощного солнечного торнадо. Высота столбов плазмы достигала 200 тысяч километров — это примерно пять планет размером с Землю. Уникальное явление произошло в сентябре прошлого года. Газ, раскалившийся до двух миллионов градусов ..
2012-03-30 1489 0 Научные открытия
0
Эксперимент с плазмой в космосе
С начала 1990-х годов повышенный интерес у физиков стала вызывать так называемая пылевая плазма, отличающаяся от плазмы обычной присутствием в ней относительно крупных (в сравнении с размерами ионов) микрочастиц-пылинок диаметром от 10 до 100 нанометров. Интерес ученых возник поневоле, поскольку пыль в плазме ..
2012-06-18 2850 0 Научные открытия
0
Физики установили мировой рекорд для компактного ускорения частиц
Физики из Калифорнии установили мировой рекорд для компактного ускорителя частиц, разогнав с помощью лазера до высоких энергий субатомные частицы (электроны). Результаты своих исследований авторы опубликовали в журнале Physical Review Letters, а кратко с ними можно ознакомиться на сайте ..
2014-12-10 1378 0 Научные открытия
2
Учёные открыли тайну магнетизма нашей Вселенной
Учёные использовали лазер для создания магнитного поля, аналогичного тем, которые по их мнению могли принять участие в формировании первых галактик, сообщает «WordScience.org». Полученные результаты могли бы помочь разрешить загадку того, как наша Вселенная получила свой магнетизм. Магнитные ..
2012-03-25 1557 0 Научные открытия
0
Теория относительности превратилась в теорию невероятности
Физики из Европейского центра ядерных исследований просят помощи у всего мирового научного сообщества, чтобы подтвердить или опровергнуть свое шокирующее наблюдение.Навязывание ложных представлений человечеству, позволяет социальным паразитам процветать, паразитируя на теле земной цивилизации...И навязывание ложных ..
2011-11-6 1570 0 Научные открытия
0
Ученые открыли термомагнитные волны в наножидкостях
Аспирант кафедры общей физики Пермского университета Александр Сидоров первым в мире экспериментально обнаружил новое физическое явление – термомагнитные волны, образующиеся в наножидкостях.Его работа была опубликована в журнале Американского физического общества Physical Review E. Исследования ..
2012-09-5 1179 0 Научные открытия
0
Раскрыта тайна рождения полярных сияний
Что вызывает полярные сияния? Взаимодействие солнечного ветра с магнитосферой Земли! А как именно это взаимодействие их вызывает? До недавнего времени ученые не знали ответа на данный вопрос. Но недавно все стало ясно — эти прекрасные явления природы вызывает процесс пересоединения магнитных линий, ..
2013-10-6 1258 0 Научные открытия
-1
Большой адронный коллайдер поставил новый рекорд энергии
Инженеры и физики Большого адронного коллайдера (БАК) провели успешный эксперимент по столкновению положительно заряженных частиц с рекордным уровнем энергии 5,02 тераэлектронвольт на каждый нуклон ядра. Достигнутая энергия в два раза превысила предыдущий «рекордный» результат. Суммарная энергия ..
2015-11-28 7010 0 Научные открытия
-1
Новый эффект Доплера позволит следить за вращением плазмы и молекул
Исследователи из Германии и Великобритании впервые экспериментально зарегистрировали вращательный доплеровский сдвиг в нелинейном оптическом режиме. Ученые полагают, что их наблюдения помогут создать методы, с высокой точностью определяющие характеристики вращения молекул, жидкостей и плазмы, а также исследовать магнитные и оптические свойства различных материалов. ..
2016-03-28 1463 0 Научные открытия
0