Химики из Университета Эдинбурга и шанхайского исследовательского центра HPSTAR впервые продемонстрировали образование ван-дер-ваальсовых соединений между ксеноном и азотом при комнатной температуре. Авторы обнаружили, что два практически инертных соединения образуют слабо связанную молекулу Xe(N2)2 при давлениях около 50 тысяч атмосфер. Подтвердить ее существование удалось спектроскопически и методами рентгеновской дифракции. Исследование опубликовано в журнале Scientific Reports.
Ван-дер-ваальсовы связи — самый слабый вид взаимодействий из возникающих между молекулами или атомами. Их энергия на порядки меньше, чем энергия химических связей (например, ковалентных) и уступает даже водородным связям. Тем не менее, в некоторых условиях такие связи можно зафиксировать и даже наблюдать соединения, которые ею обусловлены. К примеру, именно такими взаимодействиями обусловлено существование димеров гелия He2. Отличить два атома, связанных ван-дер-ваальсовыми связями, от изолированных частиц можно с помощью спектральных методов: такая связь обладает характерными частотами колебаний, из которых можно, например, выяснить ее энергию.
Особый интерес химиков вызывают процессы, в ходе которых в реакцию вступают вещества, обычно не реагирующие ни с чем. К примеру, ксенон при комнатной температуре не реагирует ни с чем, кроме окислителя исключительной силы — гексафторида платины. Немного активнее вступает в химические реакции азот — основной компонент нашей атмосферы. При комнатной температуре он вступает в химическое взаимодействие с литием.
Недавно теоретики предсказали, что при давлении в 1,46 миллиона атмосфер ксенон и азот могут реагировать друг с другом, образуя нитрид ксенона с формулой XeN6. В новой работе химики попытались проверить это предположение. Хотя найти признаки образования нитрида ксенона ученым не удалось, авторы обнаружили, что уже при давлении в 50 тысяч атмосфер два этих газа формировали ван-дер-ваальсовы связи.
В эксперименте химики помещали твердый ксенон (при температуре менее –112 градусов Цельсия) в ячейку, состоящую из двух алмазных «наковален». Затем туда же помещали под давлением чистый азот. После этого ячейку сдавливали, создавая давление вплоть до 1,8 миллиона атмосфер. Благодаря прозрачности и стойкости алмаза физики могли проводить спектральные и рентгеновские измерения образца, находившегося внутри ячейки.
Химики отмечают высокую стабильность Xe(N2)2 при высоких давлениях (вплоть до 1,8 миллиона атмосфер) и высоких температурах (до двух тысяч кельвинов). Как заключают авторы, новая работа вновь показывает, что ксенон гораздо более реакционноспособен, чем считалось ранее.
Недавно другая группа химиков из Великобритании, Японии и Франции заставила ксенон вступить в соединение с кислородом, синтезировав два новых его оксида — Xe3O2 и Xe2O5. Для этого потребовались давления на порядок большие, чем в новой работе — около миллиона атмосфер. Авторы также использовали в своей работе алмазную ячейку.
Высокие давления заставляют многие вещества менять свои химические и физические свойства. Так, при давлениях порядка двух миллионов атмосфер типичный металл натрий становится прозрачным диэлектриком, графит превращается в лонсдейлит, а в окиси азота возникают сверхпроводящие свойства. Одним из самых примечательных примеров является поведение cероводорода под давлением: он становится рекордсменом высокотемпературной сверхпроводимости.
Владимир Королёв